Versatile, flexible, and economical sensors

A versatile, flexible sensor sheet can easily be fitted with a large volume of wind monitoring and volume monitoring. The sensor measures the electrical resistance generated when it raindrops on its surface at different wind speeds and provides sensor data, which is analyzed through reservoir computing. Credit: Kuniharu Takei, OMU

Have you ever been trapped in an unexpected torrential downpour? Weather forecasting systems have always tried to anticipate adverse weather events. These systems, however, are heavily dependent on bulky, stationary, expensive equipment such as weather radar, impeding timely updates. Tackling this gap in knowledge and practicality, a research team from Osaka Metropolitan University and the University of Tokyo developed an attachable and lightweight sensor.

This single device allows simultaneous real-time measurement of raindrop volume and wind speed, reporting weather information when attached to umbrellas, cars, or houses. Research lead Professor Kuniharu Takei of Osaka Metropolitan University noted, “The findings open up a promising economic approach to weather reporting, contribute to disaster preparedness and greater community safety.”

To determine rain volume, the sensor measures the electrical resistance generated when a raindrop hits its surface. It is protected by a superhydrophobic silicone sheet of polydimethylsiloxane (PDMS), which is infused with graphene and further processed with a laser. The superhydrophobic silicone repels water droplets, protecting the durability and stability of the sensor. Laser texturing allows constant control and measurement of the behavior of water droplets, be they staying, sliding, bouncing, or splitting on the sensor surface.

The sensor can easily be fixed to a wide or bent surface. Testing changes in rainfall volume estimates If widely adopted, it would be possible to obtain mass data that enables the development of real-time local weather maps.

Wind speed has a significant effect on water droplet behavior, indicating the need to measure wind speed at the same time as raindrop volume. Conventionally, measuring multiple pieces of weather data requires multiple sensors, increasing power consumption. Going beyond this traditional practice, the researchers have used an algorithm called reservoir computing (RC) to analyze the output data. Changes in rain and wind conditions caused by resistance changes, which were detected by the sensor and then recorded as time-series data. Such data were used to train the machine, which predicted the pattern and reported rain volume and wind speed as output information.

Even though there is still more work to be done to improve its accuracy, the sensor is expected to be the mainstay of next-generation weather sensing. The study, published in Advanced Materials, progresses the United Nations Sustainable Development Goals on resilient infrastructure, sustainable cities, and climate action. “We believe this device can contribute to the ultimate Internet-of-Things society, which is safe, secure, comfortable, and disaster-free,” concluded Professor Takei, “and we would like to engage in industry-government-academia collaboration that uses such practical applications. ”

Folding design leads to heart sensor with smaller profile

More information:
Seiji Wakabayashi et al, A Multitasking Flexible Sensor via Reservoir Computing, Advanced Materials (2022). DOI: 10.1002 / adma.202201663

Provided by Osaka Metropolitan University

Citation: Next-generation weather reporting: Versatile, flexible, and economical sensors (2022, May 13) retrieved 13 May 2022 from .html

This document is subject to copyright. Apart from any written permission for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Leave a Comment